Numeric Response Questions

Area Under the Curve

- Q.1 Find the area between the curve y = 1 |x| and x-axis.
- Q.2 Find the area of the region enclosed between the curve $x^2 = 2y$ and the straight line y = 2.
- Q.3 Find the common area of the curves $y = \sqrt{x}$ and $x = \sqrt{y}$,
- Q.4 Find the area bounded by the curve $y = \sin x$, x-axis and the lines x = 0 and $x = \pi$.
- Q.5 Find the area between the parabola $x^2 = 4y$ and line x = 4y 2.
- Q.6 Find the area of the region bounded by curves y = |x 1| and y = 3 |x|.
- Q.7 Find the area bounded by the curve $y = x^3$, x-axis and ordinates x = -2 and x = 1.
- Q.8 Find the area of the figure bounded by $y^2 = 9x$ and y = 3x.
- Q.9 If the areu of the region $\{(x, y): x^2 + y^2 \le 1 \le x + y\}$ is $\frac{\pi}{4} k$ then find k.
- Q.10 If area bounded by the curve $xy^2 = a^2(a x)$ and the $y \cdot axis$ is ka^2 then find k.
- Q.11 If the area bounded by the curves $y = e^x$, $y = e^{-x}$ and y = 2, is $2\log\left(\frac{k}{e}\right)$ then find k.
- Q.12 Find the area bounded by the eurves y = |x 2|, x = 1, x = 3 and x-axis,
- Q.13 If the area bounded by the curves $y = \sin x$, $y = \cos x$ and y-axis in first quadrant is $(\sqrt{k} 1)$ then find k.
- Q.14 Find the area bounded by region $\{(x, y): |x| \ge y \ge x^2 \xi$.
- Q.15 Find the area bounded by loop of $|y| = \sin x$ for $0 \le x \le \pi$.

ANSWER KEY

1. 1.00

2. 5.33 **9.** 0.5

3. 0.33 **10.** 3.14 4.2.00 **11.** 4.00 **5.** 1.12 **12.** 1.00 **6.** 4.00 **13.** 2.00 7. 4.25 **14.** 0.33

8.0.5

15. 4.00

Hints & Solutions

1.

2.

Area =
$$8 - \int_{2}^{2} \left(\frac{x^2}{2}\right) dx$$

3.

Area =
$$\frac{16}{3}$$
ab = $\frac{16}{3} \left(\frac{1}{4}\right) \left(\frac{1}{4}\right) = \frac{1}{3}$

Area =
$$\int_{0}^{\pi} \sin x \, dx = (-\cos x)_{0}^{\pi}$$

= $-[\cos \pi - \cos 0] = 2$

$$= - \left[\cos \pi - \cos 0\right] = 2$$

$$x^2 = x + 2 \qquad \Rightarrow x = -1, 2$$

Area =
$$\int_{1}^{2} \left[\frac{x+2}{4} - \frac{x^2}{4} \right] dx = \frac{9}{8}$$

$$AB = 2/\sqrt{2}$$
, $BC = 4/\sqrt{2}$.

∴ Area = 4

7.

Area =
$$\left| \int_{-2}^{0} x^{3} dx \right| + \int_{0}^{1} x^{3} dx = \frac{17}{4}$$

8. Required area

= area OPQRO – area
$$\triangle$$
OQR
= $\int_{0}^{1} \sqrt{9x} dx - \int_{0}^{1} \sqrt{1 + 3} dx - \int$

$$= \int_{0}^{1} \sqrt{9x} \, dx - \frac{1}{2} \times 1 \times 3 = 3 \left. \frac{2}{3} x^{3/2} \right|_{0}^{1} - \frac{3}{2} = \frac{1}{2}$$

9.
$$(0, 1)$$

$$x^{2} + y^{2} = 1$$

$$= \frac{\pi \times 1^{2}}{4} - \frac{1}{2} \times 1 \times 1$$

10.
$$y^{2} = a^{2} \frac{(a-x)}{x}$$

$$y = \pm a \sqrt{\frac{a-x}{x}}$$

$$=2\,\int_0^a\!a\sqrt{\frac{a-x}{x}}\,\,dx$$

Put $x = a \sin^2\theta$

Area =
$$2\left\{\frac{1}{2}(1)(1)\right\} = 1$$

Required area $=2\int_{0}^{1}(x-x^{2})dx$ $=2\left[\frac{x^2}{2}-\frac{x^3}{3}\right]_0^1$ $= 2\left[\frac{1}{2} - \frac{1}{3}\right] = 2 \times \frac{1}{6} = \frac{1}{3}$

$$A = 2 \int_0^{\pi} \sin x \, dx = 4$$

15.